Application of GeoFEST with PYRAMID mesh refinement to Southern California crustal deformation

Jay Parker, Gregory Lyzenga, Margaret Glasscoe, Teresa Baker, Andrea Donnellan

Jet Propulsion Laboratory, California Institute of Technology

GeoFEST contributors

- Supported by the Computational Technologies Program
 of NASA's Earth Science Technology Office, http://ct-esto.jpl.nasa.gov/
- Project Principal Investigator -- Andrea Donnellan
- Management and Coordination -- Michele Judd
- guiVISCO object composer and mesher Jin-fa Lee (Ohio State)
- PYRAMID, MPI Integration -- Charles Norton, Edwin Tisdale
- Validation -- Cinzia Zuffada
- Visualization -- Peggy Li
- Web Portal -- Marlon Pierce (U. of Indiana)

Why Mesh Refinement

Why Stress/Strain, why Finite Elements

Southern California settings, flexible meshing

 Parallel performance scaling for unstructured elements

- Cost of various mesh strategies
- Validation of fault stepover, refinement with strain energy

Why Stress/strain finite elements

- •Earth Science is becoming pattern of *Monitor-Model-Assess-Predict*.
- •New missions will generate 10 to 20 TB per week.
 - --Earth Science Enterprise Computational Technology Requirements Workshop, NASA, 2002
- •Scales of earthquake sources span eight orders of magnitude (~fractal)
- •Optimal use of data requires fit to a model
- •Finite element mechanics fills key niche:
 - --couples to other methods (BE, . . .)
 - --approximate parameterizations (damage rheology, . . .)

Los Angeles Basin Compressio

Demonstrate technology:

- Parallel AMR,
- >16 million finite elements,
- > 1000 time steps

Jointly match data:

- SCIGN velocity features
- Known fault rates
- Known mountain growth

--In progress.

SCIGN GPS station

Landers Event

Vertical Faults, Finite Element Nodes

Demonstrate technology:

- Parallel AMR,
- >10 million finite elements,
- > 1000 time steps

Simulate event:

- Stress transfer
- Match GPS-observed regional relaxation

What is GeoFEST?

Geophysical Finite Element Simulation Tool

- Finite elements for elastic/viscoelastic stress, strain
- Unstructured 3-D meshes, material variations
- Fault dislocations and geophysical sources
 - -stress-triggered fault slip
 - -non-Newtonian viscosity
 - *—gravity, buoyancy*
- •Support/development for
 - -parallel computing
 - —adaptive mesh refinement
 - -visualization

GeoFEST Equations

Elastic equilibrium

$$\sigma_{ij,j} + f_i = 0,$$

Viscoelastic relaxation

$$\frac{\partial \sigma_{ij}}{\partial t} = c_{ijkl} \left(\frac{\varepsilon_{kl}}{\partial t} - \frac{\varepsilon_{kl}^{vp}}{\partial t} \right),$$

Isotropic material

$$c_{ijkl} = \mu(x) \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) + \lambda(x) \delta_{ij} \delta_{kl},$$

Viscoplastic strain rate

$$\frac{\partial \varepsilon_{ij}^{vp}}{\partial t} = \beta_{ij} (\sigma_{ij}),$$

... so materials have lame parameters, viscosity, and body force

Two modes for using GeoFEST

QuakeSim Web Portal

- + Can do full projects in browser
- + No code port required
- + Runs remote jobs simply

— Under development

OpenChannel Download

- + GeoFEST, Pyramid full source
- + Can debug at any level
- + Runs on many platforms

— Compiler required

GeoFEST Problem Definition

Faults, Layers

Solid Geometry

Tetrahedral Mesh

Simulation Specification

Material Properties

Boundary Conditions

Input File

Run GeoFEST

(QuakeTables fault database)

Mesh generation

Visualization

GeoFEST simulation, job sumbission and control

Quick-view visualization

CT Project Milestones, Challenges

Baseline milestone (8/02):

- 50,000 elements, 1000 time steps
- Sequential execution in 13.8 hours

Parallel milestone (9/03):

- 1.25 million elements, 1000 time steps
- 64 processor Linux cluster in < 13.8 hours (attained 2.8 hours)

Final milestone (nominally 6/04):

- •16 million elements, 1000 time steps
- ~100's processor cluster in < 13.8 hours
- Demonstrate adaptive mesh refinement

The challenge: how costs scale

- File size: ~21 * Elements (compressed ASCII)
- Transfer time: ~3e-6 s * Elements (local network)
- Preprocessing: ~Elements
- Cluster memory: ~1e4 bytes*Elements
- Solve time:
 ~steps*(Elements)^{4/3}/Processors

Pyramid Parallel Unstructured Adaptive Mesh Refinement Library

- A FORTRAN90-based software library
- For parallel unstructured adaptive mesh refinement
- Supports large-scale simulation applications with complex geometries.
- Manages partition of element domains on processors.
- With GeoFEST, solution-driven mesh improvement
- GeoFEST not using dynamic mesh modification

Parallel GeoFEST: Scaling

Landers, 1.4M elements 1000 time steps, ~200 iterations per step

=>Steps, iterations dominate time

 $\Rightarrow Ops \sim Elts^{(4/3)}$

How many elements?

Consider a L=500(cube) domain, with a fault edge (finest feature l=1km)

(motivated by LA Basin simulation geometry, shown here)

- **Fine** density mesh everywhere: Elements = $5(L/l)^3 = 725M$.
- Heuristic (roughly what we use today):
 --elements grow by "A" with distance from line.

Nearest edge, need $\sim 20*(L/l)$

Next, (to A km) another $\sim 20*(L/(Al))$

to 2A, another $\sim 20*(L/(2Al))$

... Geometric progression, so (optimistically)

Elements $\sim 20(L/l)A/(A-1) \sim 30,000$ (for A=1.5).

• Use **strain energy** from scratch solution to direct PAMR. Performance similar to heuristic, but *physics based*, *automatic*, *avoids errors*.

Adaptive Meshing (in progress)

Mesh on faults (side view)

- Aim to use PYRAMID parallel library (NASA ESTO CT Project)
- Changes mesh after import to cluster
- Strain energy guides 3D refinement

Detailed Validation GeoFEST vs. Analytic Fault Stepover

- Handles millions of elements in MPI code
- Heuristic mesher can vary density with high generality:
 High near fault edges, very low to extend to far boundaries
- PYRAMID integration works at first level (partition management) and generates quality refined meshes.
 Integration in progress.
- Strain Energy refinement converges to correct solution.
- Validation with known solutions indicates 1-2 iterations OK.
- Visit us at http://quakesim.jpl.nasa.gov

Background:

10M Element Landers coseismic uplift coded as radar phase, 256 Processors of SGI "Cosmos" system at JPL

